| Taryag                                                                                                     |             | Report       |  |
|------------------------------------------------------------------------------------------------------------|-------------|--------------|--|
| Title:                                                                                                     | QA-L 529    | Revision: 01 |  |
| Determination of percentage penetration of 5 micron particle through the textile materials (Group B masks) | Page 1 of 5 |              |  |

| Name            | Title                             | Signature | Date       |
|-----------------|-----------------------------------|-----------|------------|
| Aharon Cohen    | TARYAG Labs, CEO                  |           | 07.04.2020 |
| Rita Eisenberg  | TARYAG Labs, Laboratories Manager |           | 07.04.2020 |
| Malki Epel      | TARYAG Labs, VP QA and RA         |           | 07.04.2020 |
| Liat Goldhammer | Sonovia, CTO                      |           | 07.04.2020 |

# Revision traceability:

| Date | Revision | Author         | Change description |
|------|----------|----------------|--------------------|
| NA   | 01       | Rita Eisenberg | Initial release    |
|      |          |                |                    |



**Customer:** Sonovia **Device:** Face masks

Document number: QA 529 [Rev. 01]

Page 2 of 5 pages

#### 1. General:

1.1. Testing laboratory: TARYAG Labs Ltd. 14 Ha'llan St. Or-Akiva 365101 Israel.

1.2. Sponsor:

Sonovia 1 Ha'Bonim St. Ramat -Gan

1.3. TARYAG Labs has been accredited by ISRAC for ISO 17025:2017.



**Customer:** Sonovia **Device:** Face masks

Document number: QA 529 [Rev. 01]

Page 3 of 5 pages

## 2. Objectives:

2.1. The purpose of this report is to summarize the results for determination of percent penetration of 5 µm particles through the textile materials.

# 3. Responsibilities:

- 3.1. The Testing laboratory is responsible for the following:
  - 3.1.1. Maintain a quality system with compliance to the ISO 17025.
- 3.2. Sponsor responsibilities:
  - 3.2.1. Review of all commissioning qualification documents for release of this protocol.
  - 3.2.2. Review of all operational qualification documents for release of validation.
  - 3.2.3. Verification of conformance with product specifications.

## 4. Standards and regulatory requirements:

- 4.1. EN 14683:2019 Medical face masks- Requirements and test methods
- 4.2. ASTM F2299/F2299M- Determining the initial efficiency of materials used in medical masks to penetration by particulates using latex spheres

### 5. List of applicable documents:

5.1. WI-L 015 Microbial barrier

### 6. Equipment and Materials

- 6.1. Microbial barrier system
- 6.2. Polystyrene latex particles (PLS) of 5.0 µm
- 6.3. Particle counter
- 6.4. Ultra-pure water



**Customer:** Sonovia **Device:** Face masks

Document number: QA 529 [Rev. 01]

Page 4 of 5 pages

### 7. Test Procedures

#### 7.1. General

- 7.1.1. The test was performed based on TARYAG-Labs specific procedures.
- 7.1.2. The parameters of TARYAG-Labs specific procedures may not correlate directly to the parameters required in EN 14683:2019 and ASTM F2299/F2299M standards.

#### 7.2. Filtration efficiency (%)

#### 7.2.1. Procedure

- 7.2.1.1. The material was strengthened and was placed into the sample holder (10 X 10 cm).
- 7.2.1.2. Test specimen included all layers of the mask in the order in which they are placed in the complete mask (Table 1); a). Direction that simulating 'exhalation' b). Direction that simulating 'breathing'.
- 7.2.1.3. In order to determine the efficiency of the tested textile materials, polystyrene particles, with a mean size of 5 µm, were delivered through the material and the % penetration was calculated (based on procedure defined in WI-L 015).
- 7.2.1.4. The material creates a filter in the measurement cell and split it into the contaminated side and the clean side. The particles flow direction is from the contaminated to the clean measurement cell side.
- 7.2.1.5. The flow rate of the inlet air was 28 L/min and the pressure differential was 10 Pa.
- 7.2.1.6. Percent (%) penetration of polystyrene particles, with a mean size of 5  $\mu$ m calculated according to the following formula:

% Penetration 5µm particles

 $= \frac{\textit{Count of } 5\mu\textit{m particles penetrated through the mask}}{\textit{Count of } 5\mu\textit{m particles used for mask contamination}}$ 

7.2.1.6 Filtration efficiency (%) results (Tables 1):

|       | Group B- Masks      |            |  |
|-------|---------------------|------------|--|
|       | <b>'Exhalation'</b> | Breathing' |  |
|       | 2.3                 | 0.5        |  |
|       | 1.3                 | 0.8        |  |
|       | 0.7                 | 0.7        |  |
|       | 0.9                 | 1.1        |  |
| AVG   | 1.3                 | 0.8        |  |
| STDEV | 0.7                 | 0.2        |  |
| MAX   | 2.3                 | 1.1        |  |
| MIN   | 0.7                 | 0.5        |  |



**Customer:** Sonovia **Device:** Face masks

Document number: QA 529 [Rev. 01]

Page 5 of 5 pages

# 11 Documentation and Archiving

11.3 Original signed protocol will be kept at the sponsor and a copy of original will be kept at TRYAG Labs.

11.4 Validation raw data will be archive at TRYAG Labs in accordance with TARYAG Labs requirements for 7 years.

### 12 Appendixes

14.1 NA